科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

Non-archimedean twisted rational maps

发布时间:2023-04-11 作者:77779193永利官网 浏览次数:
Speaker: 聂洪明 DateTime: 2023年4月13日(周四)上午 10:00-12:00
Brief Introduction to Speaker:

聂洪明 石溪大学(Stoney Brook University)Milnor Lecturer

Place: 6号楼77779193永利官网 415会议室 腾讯会议号: 756 325 089 密码:111111
Abstract: Let $K$ be an algebraically closed and complete field with a non-trivial valuation and let $Aut(K)$ be the group of continuous (field) automorphisms of $K$. For $\tau\in Aut(K)$ and a rational map $f\in K(z)$, the composition $\tau(f(z))$ is a well-defined map over $K$. In the case that $K=\mathbb{C}$, the map $\tau(f(z))$ is either $f$ itself or the complex conjugation of $f$ (anti-holomorphic map). In the case that $K$ is non-archimedean, the map $\tau(f(z))$ exhibits features under iteration that never occur in the complex setting. We call such maps the (nom-archimedean) twisted rational maps. In this talk, I will discuss the (Berkovich) dynamics for such twisted rational maps. This is a joint work with R. Birkett and S. Zhao.