77779193永利官网
ENGLISH
|
学校主页
77779193永利官网
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
77779193永利官网
>
科学研究
>
学术报告
> 正文
A non-Stefan free boundary problem
发布时间:2021-12-10 作者:77779193永利官网 浏览次数:
Speaker:
王皓
DateTime:
2021年12月16日(周四)上午10:00-11:00
Brief Introduction to Speaker:
王皓教授,
the University of Alberta
Place:
腾讯会议:150332323
Abstract:
I will present a novel free boundary problem to model the movement of single species with a range boundary. The change of a free boundary is assumed to be influenced by the weighted total population inside the range boundary, which is described by an integro-differential equation. Our free boundary equation is a generalization of the classical Stefan condition that allows for nonlocal influences on the boundary movement. We prove that the new model is well posed and possesses steady state. The spreading speed of the model is smaller than that for the equivalent problem with a Stefan condition. While the classical Stefan condition categorizes asymptotic behavior via a spreading-vanishing dichotomy, the new model extends this dichotomy to a spreading-balancing-vanishing trichotomy. Our model allows both expansion and shrinking of the range boundary. When the model is extended to have two free boundaries, we observe asymmetric shifts, as well as steady state within synchronous moving b...
上一条:
Recent regularity theory of optimal transport and applications
下一条:
Complex dynamics of a tumor-immune system with antigenicity