科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

Global stability of a fractional order SIS epidemic model

发布时间:2024-11-18 作者:77779193永利官网 浏览次数:
Speaker: 王玮明 DateTime: 2024年11月21日(周四) 下午 16:00-18:00
Brief Introduction to Speaker:

王玮明博士,淮阴师范学院“翔宇学者”,二级教授;中国数学会生物数学专委会常务理事、副秘书长;陕西师范大学兼职博导。江苏省十四五“数学”重点学科带头人;江苏省高校科技创新团队带头人;淮安市传染病防控及预警重点实验室主任。曾入选浙江省“新世纪 151 人才工程”第二层次,担任浙江省十二五“应用数学”重点学科带头人。近十多年来一直专注于传染病防控的建模分析及预警研究,得到了国家自然科学基金的连续资助,已主持完成面上项目2项,目前主持在研1项。在科学出版社出版专著2部。近五年来,获中国产学研合作与创新成果奖优秀奖、海南省自然科学奖二等奖和新疆自治区科技进步奖二等奖各1项。入选爱思唯尔2020--2023“中国高被引学者”、科睿唯安2021、2022 “全球高被引科学家”、以及美国斯坦福大学全球前2%顶尖科学家“终身科学影响力”等榜单。


Place: 国交2号楼315会议室
Abstract:In this talk, I will introduce our resent work about the global stability of a fractional order SIS epidemic model. we establish a new fractional order SIS (frSIS) model by way of continuous time random walk. The value of this study lies in two aspects. Mathematically, we provide a framework for the global stability of the frSIS model, and prove that the basic reproduction number R0 can be used to govern the dynamics of the frSIS model. If R0 < 1, the disease-free equilibrium of the model is globally asymptotically stable; if R0>1, the endemic equilibrium of the model is globally asymptotically stable. And epidemiologically, we find that, in order to control the spread of the disease, we must decrease the death rate and the average infectious period to make the disease go to extinction, which can provide us with some useful control strategies to regulate disease dynamics.