科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

Curvature flows for hypersurfaces and their geometric applications

发布时间:2024-03-11 作者:77779193永利官网 浏览次数:
Speaker: 李海中教授 DateTime: 2024年3月16日(周六)下午15:30-16:30
Brief Introduction to Speaker:

李海中,清华大学数学科学系教授,博士生导师,二级教授,国务院政府特殊津贴获得者,2019年荣获国家自然科学奖二等奖,2018年荣获教育部自然科学奖一等奖,长期从事微分几何的研究工作,在微分几何和几何分析领域做出了一系列重要的研究成果。在国际著名数学期刊 JDG, Crelle, Math. Ann., TAMS, AIM, CVPDE, CMP, IMRN, IUMJ等上发表论文160余篇、被国内外同行引用1700余次。与澳大利亚科学院院士Ben Andrews教授合作,给出了三维球面中常平均曲率嵌入环面的完全分类,完全解决了著名的Pinkall-Sterling猜想。

Place: 六号楼二楼报告厅
Abstract:Isoperimetric inequality is one of the oldest problems in mathematics, which relates with convex geometry, differential geometry and geometric PDEs, etc. Recently, the isoperimetric type inequalities in hyperbolic space have been widely investigated by using the hypersurface curvature flows, including the inverse curvature flows, quermassintegral preserving curvature flows, contracting curvature flows, and locally constrained curvature flows. In this talk, I will survey the recent progress in this direction, which is based on my joint works with Ben Andrews (ANU), Yong Wei (USTC), Changwei Xiong (SCU), Yingxiang Hu (Beihang U.).