科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

时间分数阶方程正反问题系列报告(五):An inverse boundary value problem for the time-fractional diffusion equation

发布时间:2023-09-15 作者:77779193永利官网 浏览次数:
Speaker: 王海兵 DateTime: 2023年9月23日(周六)下午14:50-15:35
Brief Introduction to Speaker:

王海兵,男,教授,博士研究生导师,主要从事数学物理反问题的研究。2012年获得北海道大学和东南大学的理学博士学位,2014年获得江苏省优秀博士学位论文,2016年入选江苏高校“青蓝工程”中青年学术带头人培养对象,2017年作为第二完成人获得教育部自然科学二等奖,2018年获得江苏省工业与应用数学学会第二届“工业与应用数学奖青年奖”,2020年获得江苏省数学会第七届江苏省“数学成就奖”。现任中国数学会计算数学分会常务理事。已作为负责人获得三项国家自然科学基金和一项江苏省自然科学基金,在《SIAM Journal on Applied Mathematics》、《SIAM Journal on Mathematical Analysis》、《SIAM Multiscale Modeling and Simulation》、《Inverse Problems》、《Journal of Computational Physics》、《Journal of Differential Equations》等国内外刊物上发表三十多篇学术论文。


Place: 6号楼2楼报告厅
Abstract:We consider an inverse boundary value problem of the time-fractional diffusion equation, which is to reconstruct the geometric information of the cavity in the background medium from the boundary measurement data. The uniqueness of the inverse problem is established by using the maximum principle and unique continuation property. After formulating the inverse problem as an ill-posed nonlinear operator equation, we develop a regularized Newton iterative method based on Frechet derivative. The Frechet differentiability of the operator is analyzed using the properties of the diffeomorphism. Moreover, the Frechet derivative can be calculated by the Neumann data of the corresponding initial boundary value problem. Finally, the linearized operator equation is solved by the least square method, and several numerical examples are also presented to show the effectiveness of the proposed algorithm.