科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

Huber's theorem for conformally compact manifolds

发布时间:2021-12-03 作者:77779193永利官网 浏览次数:
Speaker: 李宇翔 DateTime: 2021年12月10日(周五)上午10:00-11:00
Brief Introduction to Speaker:
李宇翔,清华大学教授。
Place: 腾讯会议:409 826 291(密码:111222)
Abstract:Huber’s Theorem states that if $(\Sigma, g)$ is a complete surface with $\int_\Sigma K^{-1}< +\infty$, then $(\Sigma, g)$ is conformally equivalent to a closed surface with finitely many points removed. Such a result is not true for a higher dimensional manifold. In this talk, we will discuss Huber's theorem on a conformally compact manifold with $Ric_g\in L^\frac{n}{2}$ or $R_g\in L^\frac{n}{2}$.