科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

An energy-stable parametric finite element method for anisotropic surface diffusion

发布时间:2021-06-21 作者:77779193永利官网 浏览次数:
Speaker: 李逸飞 DateTime: 2021年6月21日(周一)下午16:00-17:00
Brief Introduction to Speaker:

李逸飞,新加坡国立大学。

Place: 六号楼二楼报告厅
Abstract:We propose an energy-stable parametric finite element method (ES-PFEM) to dis- cretize the motion of a closed curve under surface diffusion with an anisotropic surface energy γ(θ) – anisotropic surface diffusion – in two dimensions, while θ is the angle be- tween the outward unit normal vector and the vertical axis. By introducing a positive definite surface energy (density) matrix G(θ), we present a new and simple variational formulation for the anisotropic surface diffusion and prove that it satisfies area/mass conservation and energy dissipation. The variational problem is discretized in space by the parametric finite element method and area/mass conservation and energy dissipation are established for the semi-discretization. Then the problem is further discretized in time by a (semi-implicit) backward Euler method so that only a linear system is to be solved at each time step for the full-discretization and thus it is efficient.