科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

On the maximin distance properties of orthogonal designs via rotation

发布时间:2021-05-31 作者:77779193永利官网 浏览次数:
Speaker: 王亚平 DateTime: 2021年6月4日(周五) 下午16:00-16:50
Brief Introduction to Speaker:

王亚平,华东师范大学经济与管理学部统计学院助理教授,2018年于北京大学获得概率论与数理统计博士学位,博士期间曾经访问美国加州大学洛杉矶分校。主要研究方向为试验设计与分析,计算机试验,响应曲面设计,应用统计等。在包括《The Annals of Statistics》和《Biometrika》等国际顶级统计期刊上发表学术论文六篇。入选2019年度上海市扬帆计划

Place: 六号楼二楼报告厅
Abstract:Space-filling designs are widely used in computer experiments. They are often evaluated by the orthogonality and distance-related criteria. Rotating orthogonal arrays constitutes an appealing approach to constructing orthogonal space-filling designs. An important issue that has been rarely addressed in the literature is the design selection for the initial orthogonal arrays. This paper studies the maximin L2-distance properties of orthogonal designs generated by rotating two-level orthogonal arrays under three measures. We provide theoretical justifications for the rotation method from a maximin distance perspective and further propose to select initial orthogonal arrays by the minimum G2-aberration criterion. As applications, new infinite families of orthogonal or 3-orthogonal U-type designs, which also perform well under the maximin distance criterion, are obtained and tabulated.