科学研究
学术报告
当前位置: 77779193永利官网 > 科学研究 > 学术报告 > 正文

On the existence of helical invariant solutions to steady Navier-Stokes equations

发布时间:2020-11-03 作者:77779193永利官网 浏览次数:
Speaker: 翁上昆 DateTime: 2020年11月6日(周五)下午15:00-16:00
Brief Introduction to Speaker:

翁上昆,武汉大学数学与统计学院教授,主要研究方向是流体力学非线性偏微分方程,最近几年主要研究管道流、Navier-Stokes方程。主要工作发表在 Ann. Inst. H. Poincaré Anal. Non LinéaireCPDEJFASIAMIndiana Univ. Math. J.等期刊上。


 

Place: 六号楼二楼报告厅
Abstract:In this talk, I will talk about the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove this problem has at least one helical invariant solution. If time allowed, I will also discuss the decay properties of axially symmetric solutions to the steady incompressible magnetohydrodynamic equations in $\mbR^3$ with finite Dirichlet integrals.