77779193永利官网
ENGLISH
|
学校主页
77779193永利官网
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
77779193永利官网
>
科学研究
>
学术报告
> 正文
Spectral Cantor-Moran measures and a Bourgain Sum of Sine problem
发布时间:2019-06-21 作者:77779193永利官网 浏览次数:
Speaker:
赖俊杰(Lai Chun-kit)
DateTime:
2019年6月25日(周二)上午10:00-12:00
Brief Introduction to Speaker:
赖俊杰(Lai Chun-kit),美国旧金山州立大学。
Place:
六号楼二楼报告厅
Abstract:
Let $\{(N_n,B_n,L_n)\}$ with $B_n\subset \{0,1,..,N_n-1\}$ for $n=1,2,...$ be a sequence of Hadamard triples, we will show that, except an extreme case, the associated Cantor-Moran measure $$\mu = \mu(N_n,B_n) = \delta_{\frac{1}{N_1}B_1}\ast\delta_{\frac{1}{N_1N_2}B_2}\ast\delta_{\frac{1}{N_1N_2N_3}B_3}\ast...\\$$ with support inside $[0,1]$ always admits an exponential orthonormal basis $E(\Lambda) = \{e^{2\pi i \lambda x}:\lambda\in\Lambda\}$ for $L^2(\mu)$, where $\Lambda$ is obtained from suitably modifying $L_n$. In the extreme case, we show that its spectality is related to the ''Bourgain Sum of Sine problem''. This is a joint work with L-X An and X.-Y Fu.
上一条:
Fourier frames and the Kadison-Singer
下一条:
Boundary operator associated to $\sigma_k$ curvature