77779193永利官网
ENGLISH
|
学校主页
77779193永利官网
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
77779193永利官网
>
科学研究
>
学术报告
> 正文
Bayesian Adaptive Lasso for Additive Hazard Regression with Current Status Data
发布时间:2019-06-13 作者:77779193永利官网 浏览次数:
Speaker:
王纯杰
DateTime:
2019年6月17日(周一)下午3:30-4:15
Brief Introduction to Speaker:
王纯杰,长春工业大学基础科学学院,院长,教授。
Place:
六号楼二楼报告厅
Abstract:
Variable selection is a crucial issue in model building and it has received considerable attention in the literature of survival analysis. However, available approaches in this direction have mainly focused on time-to-event data with right censoring. Moreover, a majority of existing variable selection procedures for survival models are developed in a frequentist framework. In this article, we consider additive hazards model in the presence of current status data. We propose a Bayesian adaptive least absolute shrinkage and selection operator procedure to conduct a simultaneous variable selection and parameter estimation. Efficient Markov chain Monte Carlo methods are developed to implement posterior sampling and inference. The empirical performance of the proposed method is demonstrated by simulation studies. An application to a study on the risk factors of heart failure disease for type 2 diabetes patients is presented.
上一条:
Regression analysis of informative current status data with the semiparametric linear transformation model
下一条:
A Vine Copula Approach for Regression Analysis of Bivariate Current Status Data with Informative Censoring