77779193永利官网
ENGLISH
|
学校主页
77779193永利官网
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
77779193永利官网
>
科学研究
>
学术报告
> 正文
Hamiltonian circles of the prism of infinite cubic graphs
发布时间:2019-03-25 作者:77779193永利官网 浏览次数:
Speaker:
李斌龙
DateTime:
2019年3月27日(周三)上午10:00--11:00
Brief Introduction to Speaker:
李斌龙
,
西北工业大学理学院副教授。
Place:
六号楼二楼报告厅
Abstract:
A circle of a infinite locally finite graph $G$ is a homeomorphic mapping of the unit circle $S^1$ in $|G|$, the Freudenthal compactification of $G$. A circle of $G$ is Hamiltonian if it meets every vertex (and then every end) of $G$. Paulraja proved that for every 3-connected cubic finite graph $G$, the prism of $G$ (the Cartesian product of $G$ and $K_2$) is Hamiltonian. We extended the result to infinite graphs, showing that if $G$ is an infinite locally finite graph, then its prism has a Hamiltonian circle.
上一条:
关于Camassa-Holm方程的一些研究
下一条:
模李(超)代数研讨会