77779193永利官网
ENGLISH
|
学校主页
77779193永利官网
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
77779193永利官网
>
科学研究
>
学术报告
> 正文
Gauss-Bonnet-Chern theorem for singular spaces and Donaldson-Thomas theory
发布时间:2018-06-21 作者:77779193永利官网 浏览次数:
Speaker:
蒋云峰 教授
DateTime:
2018年6月25日(周一)上午10:00-11:00
Brief Introduction to Speaker:
蒋云峰教授,美国堪萨斯大学。
Place:
六号楼二楼报告厅
Abstract:
The Gauss-Bonnet-Chern theorem states that for a smooth compact complex manifold,the integration of the top Chern class is the topological Euler characteristic of the manifold.In order to study Chern class for singular spaces,R. MacPherson introduced the notion of local Euler obstruction.A characteristic class for a local Euler obstruction was defined by using Nash blow-ups, and is called the Chern-Mather class or Chern-Schwartz-MacPherson class. The Gauss-Bonnet-Chern theorem is generalized to singular spaces by the top Chern-Schwartz-MacPherson classes. Inspired by gauge theory in higher dimension and string theory, the curve counting theory via stable coherent sheaves was constructed by Donaldson-Thomas on projective 3-folds, which is now called the Donaldson-Thomas theory.
上一条:
Survey on Ginzburg-Landau Models
下一条:
Gluing method and blow-up solutions for the energy critical nonlinear heat equation